Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
Electronics ; 11(9):1378, 2022.
Article in English | ProQuest Central | ID: covidwho-1837990

ABSTRACT

Arterial blood pressure is not only an important index that must be measured in routine physical examination but also a key monitoring parameter of the cardiovascular system in cardiac surgery, drug testing, and intensive care. To improve the measurement accuracy of continuous blood pressure, this paper uses photoplethysmography (PPG) signals to estimate diastolic blood pressure and systolic blood pressure based on ensemble empirical mode decomposition (EEMD) and temporal convolutional network (TCN). In this method, the clean PPG signal is decomposed by EEMD to obtain n-order intrinsic mode functions (IMF), and then the IMF and the original PPG are input into the constructed TCN neural network model, and the results are output. The results show that TCN has better performance than CNN, CNN-LSTM, and CNN-GRU. Using the data added with IMF, the results of the above neural network model are better than those of the model with only PPG as input, in which the systolic blood pressure (SBP) and diastolic blood pressure (DBP) results of EEMD-TCN are −1.55 ± 9.92 mmHg and 0.41 ± 4.86 mmHg. According to the estimation results, DBP meets the requirements of the AAMI standard, BHS evaluates it as Grade A, SD of SBP is close to the standard AAMI, and BHS evaluates it as Grade B.

2.
Brief Bioinform ; 23(2)2022 03 10.
Article in English | MEDLINE | ID: covidwho-1684526

ABSTRACT

The application of machine intelligence in biological sciences has led to the development of several automated tools, thus enabling rapid drug discovery. Adding to this development is the ongoing COVID-19 pandemic, due to which researchers working in the field of artificial intelligence have acquired an active interest in finding machine learning-guided solutions for diseases like mucormycosis, which has emerged as an important post-COVID-19 fungal complication, especially in immunocompromised patients. On these lines, we have proposed a temporal convolutional network-based binary classification approach to discover new antifungal molecules in the proteome of plants and animals to accelerate the development of antifungal medications. Although these biomolecules, known as antifungal peptides (AFPs), are part of an organism's intrinsic host defense mechanism, their identification and discovery by traditional biochemical procedures is arduous. Also, the absence of a large dataset on AFPs is also a considerable impediment in building a robust automated classifier. To this end, we have employed the transfer learning technique to pre-train our model on antibacterial peptides. Subsequently, we have built a classifier that predicts AFPs with accuracy and precision of 94%. Our classifier outperforms several state-of-the-art models by a considerable margin. The results of its performance were proven as statistically significant using the Kruskal-Wallis H test, followed by a post hoc analysis performed using the Tukey honestly significant difference (HSD) test. Furthermore, we identified potent AFPs in representative animal (Histatin) and plant (Snakin) proteins using our model. We also built and deployed a web app that is freely available at https://tcn-afppred.anvil.app/ for the identification of AFPs in protein sequences.


Subject(s)
Antifungal Agents/chemistry , Antimicrobial Peptides/chemistry , Deep Learning , Drug Discovery/methods , Neural Networks, Computer , Algorithms , Antifungal Agents/pharmacology , Antimicrobial Peptides/pharmacology , Artificial Intelligence , Databases, Factual , Humans , ROC Curve , Reproducibility of Results , Software , Workflow
3.
Comput Biol Med ; 141: 105146, 2022 02.
Article in English | MEDLINE | ID: covidwho-1588035

ABSTRACT

Heart rate (HR) estimation is an essential physiological parameter in the field of biomedical imaging. Remote Photoplethysmography (r-PPG) is a pathbreaking development in this field wherein the PPG signal is extracted from non-contact face videos. In the COVID-19 pandemic, rPPG plays a vital role for doctors and patients to perform telehealthcare. Existing rPPG methods provide incorrect HR estimation when face video contains facial deformations induced by facial expression. These methods process the entire face and utilize the same knowledge to mitigate different noises. It limits the performance of these methods because different facial expressions induce different noise characteristics depending on the facial region. Another limitation is that these methods neglect the facial expression for denoising even though it is the prominent noise source in temporal signals. These issues are mitigated in this paper by proposing a novel HR estimation method AND-rPPG, that is, A Novel Denoising-rPPG. We initiate the utilization of Action Units (AUs) for denoising temporal signals. Our denoising network models the temporal signals better than sequential architectures and mitigate the AUs-based (or face expression-based) noises effectively. The experiments performed on publicly available datasets reveal that our proposed method outperforms state-of-the-art HR estimation methods, and our denoising model can be easily integrated with existing methods to improve their HR estimation.


Subject(s)
COVID-19 , Pandemics , Algorithms , Heart Rate , Humans , Photoplethysmography , SARS-CoV-2 , Signal Processing, Computer-Assisted
SELECTION OF CITATIONS
SEARCH DETAIL